
How Machine Learning Transparency Affects Decision Making

by Dr. Fahimeh Rajabiyazdi

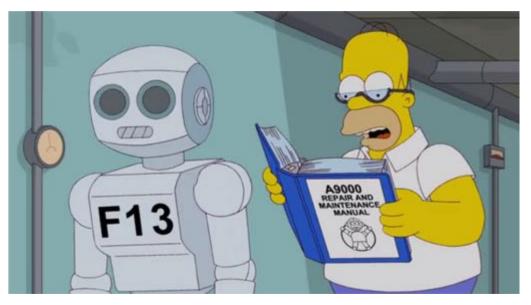
The costs of over-automation

- Loss of Situation Awareness
- Out-of-the-loop unfamiliarity
- Mis-calibrated trust in automation
- Degraded understanding of automation
- Increased operational complexity
- New types of human-automation failures
- Automation bias & complacency
- Increased cognitive demand and sudden workload transitions
- Under-stimulation and loss of vigilance
- De-skilling

The Simpsons, S23, E17, Them, Robot

Introduction

Background


Experiment

Meta-analysis

Conclusion

Automation Transparency

Facilitate human-automationtask interaction by overtly disclosing automation's otherwise hidden complexity through a technology medium.

The Simpsons, S23, E17, Them, Robot

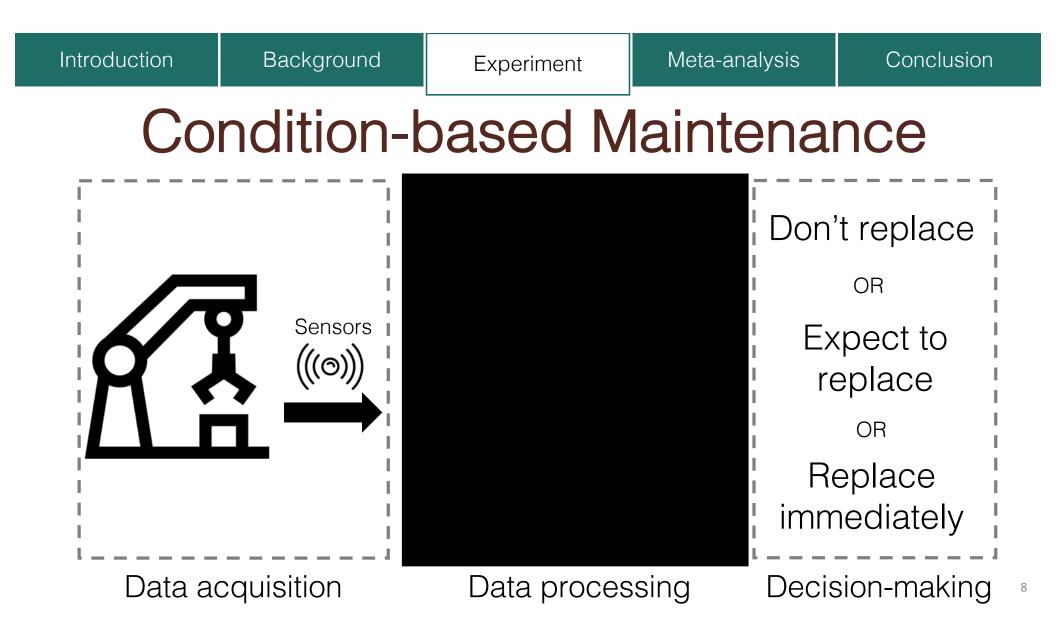
Transparency Objectives

- Support understanding
- Calibrate and resolve trust
- Improve human-automation task performance
- Increase situation awareness

F. **Rajabiyazdi**, Jamieson, G. A., Skraaning Jr. (2022) "Seeing-through and Seeing-into Automation Transparency: A Scoping Review," submitted to IEEE Transactions on Human-Machine Systems (under review).

F. Rajabiyazdi and G. A. Jamieson, "A Review of Transparency (seeing-into) Models," in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, pp. 302-308.

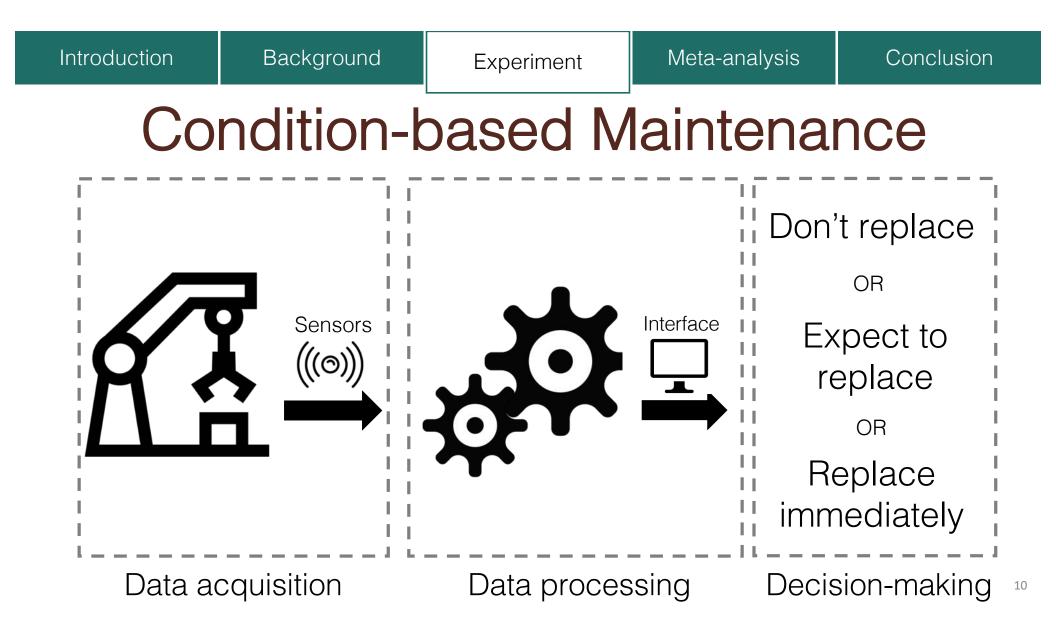
A. F. T. Winfield, S. Booth, L. A. Dennis, T. Egawa, H. Hastie, N. Jacobs, R. I. Muttram, J. I. Olszewska, F. **Rajabiyazdi**, A. Theodorou, M. A. Underwood, R. H. Wortham, and E. Watson, "IEEE P7001: A Proposed Standard on Transparency," Frontiers in Robotics and AI, vol. 8, p. 225, 2021.


Introduction	Background	Experiment	Meta-analysis	Conclusion

Experiment

Introduction	Background	Experiment	Meta-analysis	Conclusion

Motivation


1. Condition-based maintenance is the most prominent application of Artificial Intelligence and Machine Learning

Introduction	Background	Experiment	Meta-analysis	Conclusion

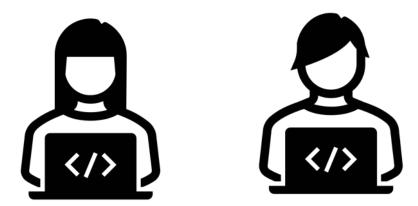
Motivation

- Condition-based maintenance is the most prominent application of AI
 - Human oversight may be required to check that the ML rationale aligns with end-user goals and metrics (Ribeiro, Singh, & Guestrin, 2016).
 - The end-user may need to verify that the training and validation data are representative of real-world conditions.

Motivation

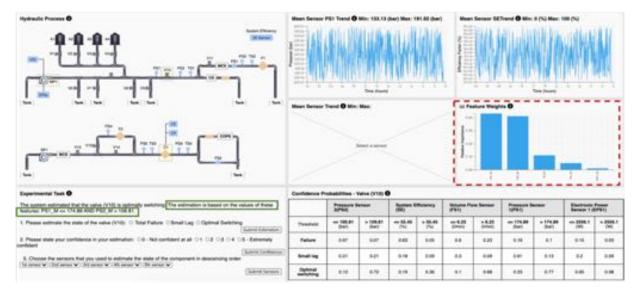
- 2. Inconsistent and, at times, conflicting results of automation transparency:
 - Positive impact on human task performance and trust calibration (Seong and Bisantz, 2008; Mercado et al. 2016).
 - Negative impact on human task performance but self-reported a better understanding of the ML-based rationale with greater information disclosure (Adhikari et al. 2019).
 - Participants performed worst but calibrated trust with information
 disclosure as automation capabilities increased (Skraaning and Jamieson, 2019).

Introduction	Background	Experiment	Meta-analysis	Conclusion


Research Question

What are the effects of disclosing the rationale that led to an automated decision on human performance (including reliance decisions, trust, task efficacy, and workload)?

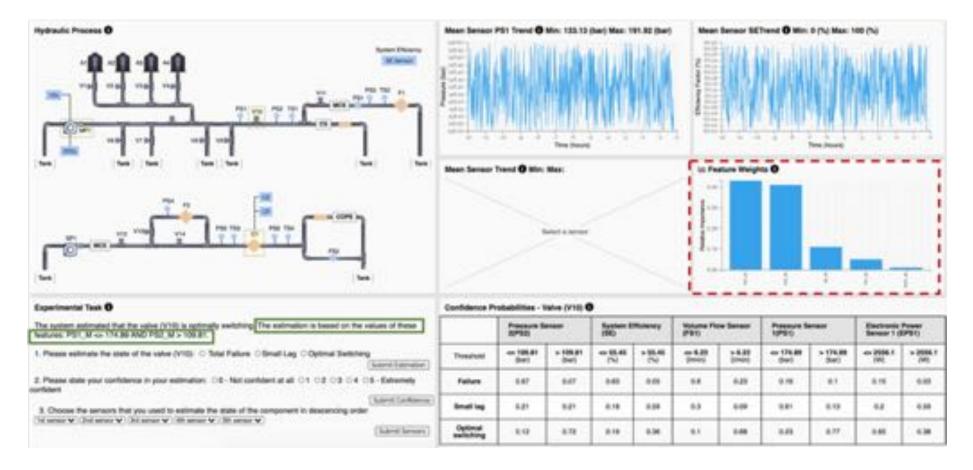
Introduction	Background	Experiment	Meta-analysis	Conclusion


But first...

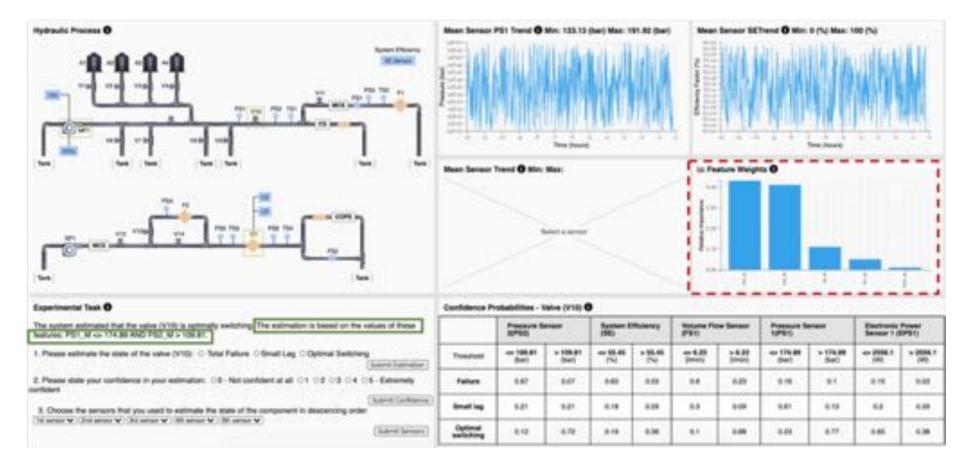
We need an apparatus


Introduction	Background	Experiment	Meta-analysis	Conclusion
Appa	ratus			

- Open source hydraulic system data
- ML predicting the condition of four hydraulic components: cooler, valve, pump, and accumulator


Introduction	Background	Experiment	Meta-analysis	Conclusion
Mach	nine Leai	rning Mo	bdel	

- Configured the number of trees, the depth of trees, the number of features to enhance comprehensibility.
- Integrated ML process with the domain knowledge of hydraulic system process.



• Determined the features and their thresholds.

Transparency Condition – Feature Weight

Transparency Condition – Decision Rules

Introduction	Background	Experiment	Meta-analysis	Conclusion

Experiment design

Transparency conditions

- 1. Local Feature Weight Graph
- 2. Decision Rules
- 3. Combined (Local Feature Weight Graph + Decision Rules)

Within-subject design (randomized and counterbalanced) with 24 (14 female, 10 male) chemical engineering undergraduate and graduate students.

Experimental Task: participants estimated the state of a hydraulic component given three possible states.

Dependent measures: reliance decisions, trust, task efficacy, and workload

Contributions

- 1. No evidence to corroborate the common belief that presenting a rationale for a decision aid's conclusion will positively impact any of the dependent measures.
- 2. Co-created a micro-world platform that has been used successfully ever since to conduct Explainable AI experiments.

F. **Rajabiyazdi**, G. A. Jamieson, and D. Quispe, "An Empirical Study on Automation Transparency (i.e., seeing-into) of an Automated Decision Aid System for Condition-Based Maintenance," in Proceedings of the 21st Congress of the International Ergonomics Association (IEA 2021), Cham, N. L. Black, W. P. Neumann, and I. Noy, Eds., 2022: Springer International Publishing, pp. 675-682

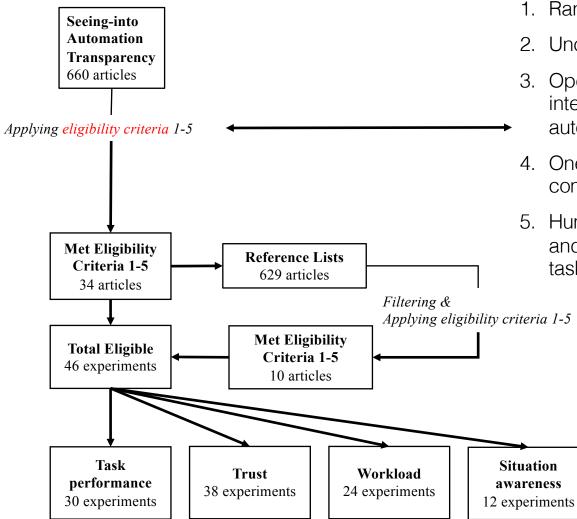
D. Quispe, F. **Rajabiyazdi** and G. A. Jamieson, "A Machine Learning-Based Micro-World Platform for Condition-Based Maintenance," 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, 2020, pp. 288-295.

Introduction	Background	Experiment	Meta-analysis	Conclusion

Meta-analysis

Backgr	ound			
	Bhaskara et al. (2020)	Van de Merwe et al. (2022)	Sargent, Walter, & Wickens (07/2023)	Our Study
No. studies	5 studies	17 studies	81 studies	46 studies
Basis of comparisons	SAT model	Type of tasks	Not specified	Logic model
Type of review	Narrative review	Narrative review	Statistical review	Systematic review 8 a meta-analysis
Outcomes	Summative claims about the effects of transparency on SA, trust, WL, and task performance.	Summative claims about the effects of transparency on SA, WL, and task performance.	Partial statistical claims about the effects of transparency on performance, WL, trust, SA.	Statistical claims about the effects of transparency on task performance.

Experiment


Meta-analysis

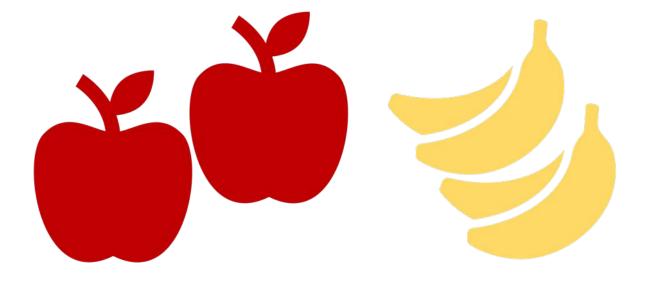
Background

Introduction

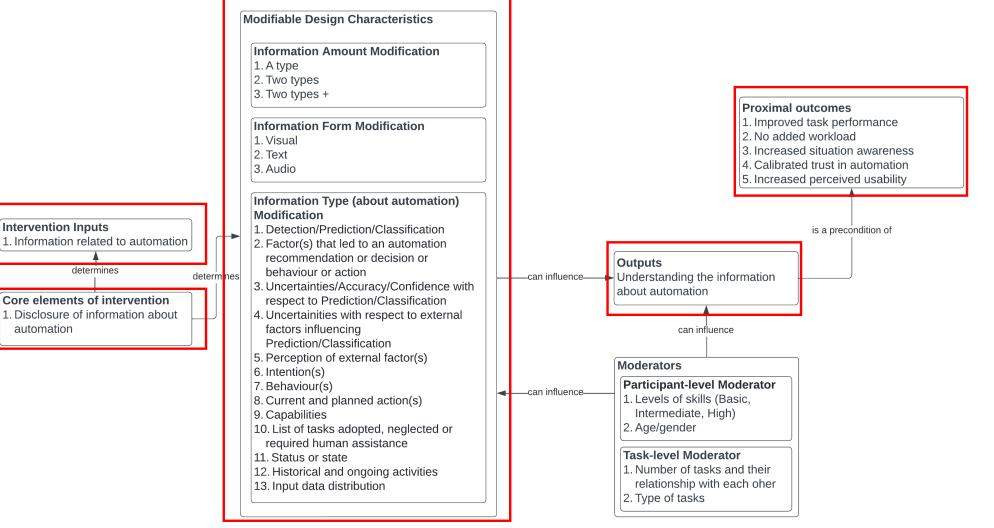
Conclusion

Selection Process

Eligibility criteria


- 1. Randomized controlled trials
- 2. Uncertain and vulnerable situations
- 3. Operationalized automation transparency intervention as the disclosure of information about automation.
- 4. One or more of our pre-defined transparency comparisons.
- 5. Human performance measures, including trust and/or workload and/or situation awareness and/or task performance and/or reliance.

Introduction	Background	Experiment	Meta-analysis	Conclusion


Transparency is a mess

Introduction	Background	Experiment	Meta-analysis	Conclusion
_	ve com ananas		g apple	es

Automation Transparency Logic Model

On what basis should we compare the eligible studies?

- Complexity Assessment Tool for Systematic Reviews (Lewin et al., 2016; Lewin et al., 2017).
- Assessed the intervention complexity on six core dimensions:
 - 1. Active Components of Automation Transparency (AT)
 - 2. Participants' Actions Targeted by AT (Experimental Tasks)
 - 3. Organisational Levels Targeted by AT (not available in the literature)
 - 4. Flexibility in AT Implementation (not available in the literature)
 - 5. Experimenters' Skills in Delivering AT (not available in the literature)
 - 6. Participants' Skills Targeted by AT

Introduction	Background	Experiment	Meta-analysis	Conclusion
			,	

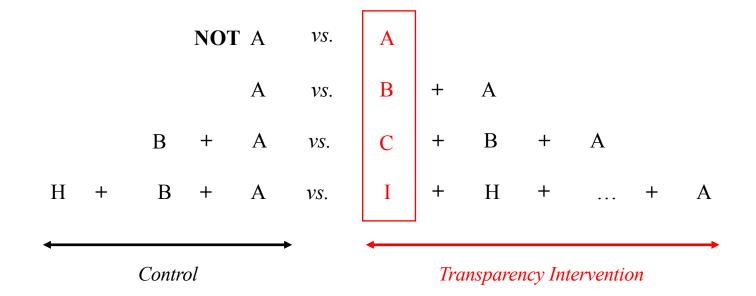
On what basis should we compare the eligible studies?

- Complexity Assessment Tool for Systematic Reviews (Lewin et al., 2016; Lewin et al., 2017).
- Assessed the intervention complexity on six core dimensions:

1. Active Components of Automation Transparency (AT)

- 2. Participants' Actions Targeted by AT (Experimental Tasks)
- 3. Organisational Levels Targeted by AT (not available in the literature)
- 4. Flexibility in AT Implementation (not available in the literature)
- 5. Experimenters' Skills in Delivering AT (not available in the literature)
- 6. Participants' Skills Targeted by AT

Introduction	Background	Experiment	Meta-analysis	Conclusion


Active Components of Automation Transparency

Comparison 1

Disclosing	one	type of information about automation <i>vs</i> . not disclosing it
Comparison	2	(control)
Disclosing	two	types of information about automation <i>vs</i> . not disclosing them (control)
Comparison	3	
Disclosing	more than two	types of information about automation <i>vs</i> . not disclosing them (control)

Introduction	Background	Experiment	Meta-analysis	Conclusion

Comparison 1: disclosing **one** type of information about automation *vs*. not disclosing it

Note: Each letter represents a type of information about automation (e.g., automation status). ³⁰

Effect Size Meta-Analysis

- 1. Compute effect size (Cohen's *d*) and variance for each study based on experimental design, sample size, & the F-test statistic.
- 2. Compute a weighted mean of these effect sizes under randomeffects model.
 - Assumption of random-effect model: True effect size varies from study to study.
- Compute the distribution of true effect using mean effect size, Tau-squared, number of studies, Confidence Interval.

Introduction

Background

Experiment

Meta-analysis

Conclusion

Results

Study name			Statistics fo	or each	study			Outcome		Std diff i	n means and	95% CI	
	Std diff in means	Standard error	Variance	Upper limit	Lower	Z-Value	p-Value						
ayyar et al. (2020)	-0.265	0.183	0.034	0.095	-0.624	-1.443	0.149	Response time	1		•+	1	- 1
elidin et al. (2020)	-0.212	0.415	0.172	0.602	-1.025	-0.510	0.610	Combined		-	-	-	
right et al. (2016)	-0.119	0.318	0.101	0.503	-0.742	-0.375	0.707	Combined		_	-	5 I I I	
ahaskara et al. (2021)	-0.078	0,189	0.036	0.292	-0.447	-0.412	0.680	Combined			_		
st et al. (2021)	-0.002	0.186	0.035	0.363	-0.367	-0.009	0.993	Combined					
towers et al. (2020)	0.205	0.141	0.020	0.480	0.071	1.456	0,146	Combined			+		
ussein et al. (2020)	0.233	0.197	0.039	0.619	-0 153	1,185	0.236	Combined				- L	
ercado et al. (2016)	0.268	0.191	0.036	0.642	-0 107	1.402	0.161	Combined				-	
uzriov et al. (2020)	0.295	0.109	0.012	0.509	0.082	2.712	0.007	Hit rate				8	
laturaji et al. (2020)EXP.		0.464	0.215	1.693	-0.126	1.688	0.091	Response time			+		- 1
beled	0.112	0.075	0.006	0.259	-0.035	1.498	0.134				•		
rediction Interval	0.112			0.452	-0.227					- L	+		
									-2.00	-1.00	0.00	1.00	2.00
0.2 is sr	nall,												
0.5 is m	oderate	·.										Y	
0.8 is a		,	e						Favou	rs contro	Favol	urs trans	sparen

32

Introduction	Background	Experiment	Meta-analysis	Conclusion
				1

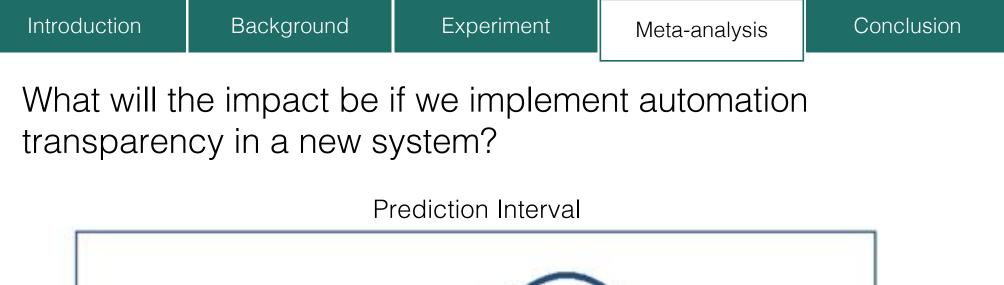
Where is transparency beneficial and where is transparency harmful?

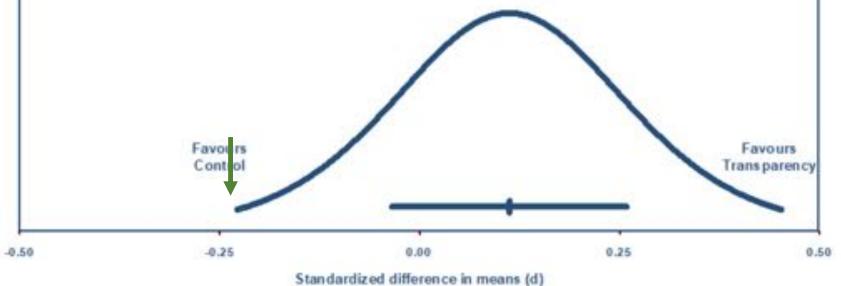
- Complexity Assessment Tool for Systematic Reviews (Lewin et al., 2016; Lewin et al., 2017).
- Assessed the intervention complexity on six core dimensions:
 - 1. Active Components of Automation Transparency (AT)
 - 2. Participants' Actions Targeted by AT (Experimental Tasks)
 - 3. Organisational Levels Targeted by AT (not available in the literature)
 - 4. Flexibility in AT Implementation (not available in the literature)
 - 5. Experimenters' Skills in Delivering AT (not available in the literature)
 - 6. Participants' Skills Targeted by AT

Where is transparency beneficial and where is transparency harmful?

- Complexity Assessment Tool for Systematic Reviews (Lewin et al., 2016; Lewin et al., 2017).
- Assessed the intervention complexity on six core dimensions:
 - 1. Active Components of Automation Transparency (AT)
 - 2. Participants' Actions Targeted by AT (Experimental Tasks)
 - 3. Organisational Levels Targeted by AT (not available in the literature)
 - 4. Flexibility in AT Implementation (not available in the literature)
 - 5. Experimenters' Skills in Delivering AT (not available in the literature)
 - 6. Participants' Skills Targeted by AT

Introduction	Background	Experiment	Meta-analysis	Conclusion
	Daonground	LAponnon	Meta-analysis	


Participants' Actions Targeted by AT – Single, Dual, Multiple


Group by Study name Behaviour				itatistica 9	atistics for each a tod			Outcome			Std diff in means and 95% CI			
Dehaviour	1000500000 J	Stider in means	Standard error	Varian or		Lower	2.Value	p-Value	-11712.G		(6000025) 10	1001030000	22 	
Dual	Nayyar et al. (2020)	-0.265	0.180	0.034	0.095	-0.624	-1.40	0.149	Response time		1	+	1	2 studies
Dual	Owney et al (2020)EVP3	0.783	0.454	0.215	1.690	-0.126	1.688	0.001	Response time		144753	-		
Dual	Pooled	-0.074	0.209	0142	0.330	-0.478	-0.260	0.719	on and one of the		-		-	-1
Dual	Prediction interval	-0.074			0.494	-4642						-		
Muttple	Heridan et al. (2020)	-0.242	0.415	6.172	9.602	-1025	-0.510	0.610	Contained					
Ulutiple	Wright et al. (2018)	-0.119	0.216	0.901	0.500	-0.742	-0.375	0.797	Contrined					
Multiple	Bahaskara et al (2021)	-0.078	3108	0.036	0.292	4.447	-0.412	0.660	Contined			_		6 studies
Multiple	Lott et al. (2021)	-0.002	0.100	0.035	0.363	4367	-0.009	0.993	Contrived.			-		o Studies
Multiple	illercado et al (2016)	0.2%6	0.191	0.005	0.642	-0.107	1,402	0.101	Contined					
Multiple	Gup nov et al. (2020)	0.296	0.109	0.010	6.509	0.082	2,712	0.007	Htrate					
Multiple	Pooled	0.108	1.009	0.010	9.302	-4,085	1.007	0.273				+		
Multiple	Prediction interval	0,108		10.00	0.494	-1.278	-1203	- 1 p. 6.	220.0216		- I F	-		
Single	Slowers et al. (2020)	0.205	0.141	0.020	0.490	-8.071	1.455	0.145	Contined.			+		2 studies
Single	Placement at all (2020)	0.233	0.107	0.039	0.619	-0.153	1.105	9,236	Contined					
Single	Protect	0.2%		0.823	0.512	-0.080	1.425	0.152	5 M (1928)	i –		-	-	-1
Single	Prediction Interval	0.216			0.684	-0.251								1
Overall	Pooled	0.111	8.677	0.006	0.265	-3.040	1.445	0.149						1
Ovetall	Prediction Interval	0.111			0.453	-0.231					1 1			
									- 4	80	-1.00	6.06	1.00	2.00
											Favours Control	Laure	s Transparency	

Introduction	Background	Experiment	Meta-analysis	Conclusion

Participants' Skills Targeted by AT – Basic, Intermediate, High

Group by Expertise	Study name			Ratisfics R	or each	ether for		Outcome		94.68	in means and 25	Ph C1		
apera se		Sto citt in means	Standard entor	Variation	Upper Smit		Z.Value	p-Value						
Sask:	Oalurg et al. (2020/EVPS)	0.783	0.454	0.2%	1,690	-6.126	1.688	0.001 Response time			+		- 1	1 study
Tanic .	Ptoled	0.783	0.479	0.229	1,722	-0.150	1.535	0.102			-		-	
and a	Prediction Interval	\$ 793			1.921	-0.355					H-	_		
401	Herden et al. (2020)	-0.212	0.415	0.172	0.502	-1.925	.4510	0.610 Contened		-		•	1	1 study
401	Piced	-0.212	0.432	0.186	0634	-1.956	-0.401	0.624				-		•
-kgh	Prediction Interval	-6.212			0.621	-1.248				H	_			
niermediate	File y ar et al. (2020)	-4.265	0.183	0.034	0.995	-0.624	-1.443	0.149 Response Site	-	-			<u> </u>	
dermediate.	WHEN M M. (2010)	-0.119	0.318	0.101	0.503	-0.742	-4.375	0.707 Contened			-		- 11	
denmediate	Refrankana et al (2021)	-0.078	0.199	0.006	0.292	-0.447	-8.412	0.580 Contriend		1.1.2	_		- 11	
- vectorements	Loft et al. (2021)	-8.802	0 196	0.005	0.363	-0.367	-0.009	0.983 Combined					- 11	0 atudia
Normadiate	(Bowers et # (2020)	0.205	0.141	0.020	0.480	4.071	1.495	0.146 Contenied					- 11	8 studie
terrediate .	Hussein et al. (2020)	0.233	0.197	0.039	0.619	-3.953	1.185	0.236 Contered						
ntermediate	tilercado et al. (2016)	0.268	0.191	0.036	0.642	-0.107	1.402	0.101 Contriend					- 11	
dormediate .	Cuprev et al (2020)	0.295	0.109	0.012	0.509	0.082	2,712	0.007 Herate					- 11	
OF BOARD	Ptoetd	8.907	0110	0.006	0,204	-2.040	1.40	0.155		-	-		-+-	
formediate	Pheidiction Interval	0.107			0.401	-0.217					H-1			
veral	Protect	0.114	0.073	0.005	6297	-0.030	1.952	0.121						
v-at ial	Prediction Interval	0.114			0.451	-0.224					H-1		-	
									2.00	1.00	6.00	1.00	2.00	
										1200000000000	1000			
										Favours Control	Favo	urs Transporen	KTW .	

Limitations

- 1. Incomplete reporting, selective reporting, or not reporting data in a format that could be used in a meta-analysis.
- 2. Risk of publication bias and study quality assessment not yet conducted.
- 3. Studies that are not comparable to others.
- Not yet conducted a meta-analysis on the effects of transparency on trust (38 studies), workload (20 studies), and situation awareness (SA) (12 studies).

Should automation be transparent?

Automation transparency is a design principle that is consistently presented in the literature as a means to improve human performance with automated systems.

In this dissertation, rigorous literature, empirical, and statistical examinations demonstrate **little evidence that automation transparency is a generalizable principle.**

Should automation be transparent?

- Need better analysis of existing evidence
 - Expand range of outcome variables
 - Fill in missing data
 - Assess risk of publication bias
 - Assess study quality
- To assemble more evidence
 - Adopt a logic model
 - Apply standards for reporting

Acknowledgment

Mentors from University of Toronto:

- Prof. Greg A. Jamieson
- Prof. Chris Beck
- Prof. Olivier St-Cyr

Special thanks to:

- David Quispe
- Dr. Gyrd Skraaning
- Dr. Sarah Simmons
- Nima Mirjalali